fieldz0.1.0
Published
Utilities for providing compatibility with many dataclass-like libraries
pip install fieldz
Package Downloads
Authors
Project URLs
Requires Python
>=3.8
Dependencies
- typing-extensions
- black
; extra == "dev"
- hatch
; extra == "dev"
- ipython
; extra == "dev"
- mypy
; extra == "dev"
- pdbpp
; extra == "dev"
- rich
; extra == "dev"
- ruff
; extra == "dev"
- annotated-types
; extra == "test"
- attrs
; extra == "test"
- dataclassy
; extra == "test"
- msgspec
; extra == "test"
- pydantic
; extra == "test"
- pytest
; extra == "test"
- pytest-cov
; extra == "test"
fieldz
Unified API for working with multiple dataclass-like libraries
Dataclass patterns
There are many libraries that implement a similar dataclass-like pattern!
dataclasses.dataclass
import dataclasses
@dataclasses.dataclass
class SomeDataclass:
a: int = 0
b: str = "b"
c: list[int] = dataclasses.field(default_factory=list)
pydantic.BaseModel
import pydantic
class SomePydanticModel(pydantic.BaseModel):
a: int = 0
b: str = "b"
c: list[int] = pydantic.Field(default_factory=list)
attrs.define
import attr
@attr.define
class SomeAttrsModel:
a: int = 0
b: str = "b"
c: list[int] = attr.field(default=attr.Factory(list))
msgspec.Struct
import msgspec
class SomeMsgspecStruct(msgspec.Struct):
a: int = 0
b: str = "b"
c: list[int] = msgspec.field(default_factory=list)
etc...
Unified API
These are all awesome libraries, and each has its own strengths and weaknesses. Sometimes, however, you just want to be able to query basic information about a dataclass-like object, such as getting field names or types, or converting it to a dictionary.
fieldz
provides a unified API for these operations (following or
extending the API from dataclasses
when possible).
def fields(obj: Any) -> tuple[Field, ...]:
"""Return a tuple of fieldz.Field objects for the object."""
def replace(obj: Any, /, **changes: Any) -> Any:
"""Return a copy of obj with the specified changes."""
def asdict(obj: Any) -> dict[str, Any]:
"""Return a dict representation of obj."""
def astuple(obj: Any) -> tuple[Any, ...]:
"""Return a tuple representation of obj."""
def params(obj: Any) -> DataclassParams:
"""Return parameters used to define the dataclass."""
The fieldz.Field
and fieldz.DataclassParam
objects are
simple dataclasses that match the protocols of dataclasses.Field
and the
(private) dataclasses._DataclassParams
objects, respectively. The field object
also adds a native_field
attribute that is the original field object from the
underlying library.
Example
from fieldz import Field, fields
standardized_fields = (
Field(name="a", type=int, default=0),
Field(name="b", type=str, default="b"),
Field(name="c", type=list[int], default_factory=list),
)
assert (
fields(SomeDataclass)
== fields(SomePydanticModel)
== fields(SomeAttrsModel)
== fields(SomeMsgspecStruct)
== standardized_fields
)
Supported libraries
-
dataclasses
-
collections.namedtuple
-
pydantic
(v1 and v2) -
attrs
-
msgspec
-
dataclassy
-
sqlmodel
(it's just pydantic)
... maybe someday?