Oven logo

Oven

Published

Calculate prices for calling LLM inference APIs.

pip install genai-prices

Package Downloads

Weekly DownloadsMonthly Downloads

Requires Python

>=3.9

genai-prices

CI Coverage PyPI versions license Join Slack

Python package for github.com/pydantic/genai-prices.

Installation

uv add genai-prices

(or pip install genai-prices if you're old school)

Warning: these prices will not be 100% accurate

See the project README for more information.

Usage

calc_price

from genai_prices import Usage, calc_price

price_data = calc_price(
    Usage(input_tokens=1000, output_tokens=100),
    model_ref='gpt-4o',
    provider_id='openai',
)
print(f"Total Price: ${price_data.total_price} (input: ${price_data.input_price}, output: ${price_data.output_price})")

extract_usage

extract_usage can be used to extract usage data and the model_ref from response data, which in turn can be used to calculate prices:

from genai_prices import extract_usage

response_data = {
    'model': 'claude-sonnet-4-20250514',
    'usage': {
        'input_tokens': 504,
        'cache_creation_input_tokens': 123,
        'cache_read_input_tokens': 0,
        'output_tokens': 97,
    },
}
extracted_usage = extract_usage(response_data, provider_id='anthropic')
price = extracted_usage.calc_price()
print(price.total_price)

or with OpenAI where there are two API flavors:

from genai_prices import extract_usage

response_data = {
    'model': 'gpt-5',
    'usage': {'prompt_tokens': 100, 'completion_tokens': 200},
}
extracted_usage = extract_usage(response_data, provider_id='openai', api_flavor='chat')
price = extracted_usage.calc_price()
print(price.total_price)

UpdatePrices

UpdatePrices can be used to periodically update the price data by downloading it from GitHub

Please note:

  • this functionality is explicitly opt-in
  • we download data directly from GitHub (https://raw.githubusercontent.com/pydantic/genai-prices/refs/heads/main/prices/data.json) so we don't and can't monitor requests or gather telemetry

At the time of writing, the data.json file downloaded by UpdatePrices is around 26KB when compressed, so is generally very quick to download.

By default UpdatePrices downloads price data immediately after it's started in the background, then every hour after that.

Usage with UpdatePrices as as context manager:

from genai_prices import UpdatePrices, Usage, calc_price

with UpdatePrices() as update_prices:
    update_prices.wait()  # optionally wait for prices to have updated
    p = calc_price(Usage(input_tokens=123, output_tokens=456), 'gpt-5')
    print(p)

Usage with UpdatePrices as a simple class:

from genai_prices import UpdatePrices, Usage, calc_price

update_prices = UpdatePrices()
update_prices.start(wait=True)  # start updating prices, optionally wait for prices to have updated
p = calc_price(Usage(input_tokens=123, output_tokens=456), 'gpt-5')
print(p)
update_prices.stop()  # stop updating prices

Only one UpdatePrices instance can be running at a time.

If you'd like to wait for prices to be updated without access to the UpdatePrices instance, you can use the wait_prices_updated_sync function:

from genai_prices import wait_prices_updated_sync

wait_prices_updated_sync()
...

Or it's async variant, wait_prices_updated_async.

CLI Usage

Run the CLI with:

uvx genai-prices --help

To list providers and models, run:

uvx genai-prices list

To calculate the price of models, run for example:

uvx genai-prices calc --input-tokens 100000 --output-tokens 3000 o1 o3 claude-opus-4

Further Documentation

We do not yet build API documentation for this package, but the source code is relatively simple and well documented.

If you need further information on the API, we encourage you to read the source code.