Oven logo

Oven

jiter0.8.2

Published

Fast iterable JSON parser.

pip install jiter

Package Downloads

Weekly DownloadsMonthly Downloads

Requires Python

>=3.8

Dependencies

    jiter

    CI pypi versions license

    This is a standalone version of the JSON parser used in pydantic-core. The recommendation is to only use this package directly if you do not use pydantic.

    The API is extremely minimal:

    def from_json(
        json_data: bytes,
        /,
        *,
        allow_inf_nan: bool = True,
        cache_mode: Literal[True, False, "all", "keys", "none"] = "all",
        partial_mode: Literal[True, False, "off", "on", "trailing-strings"] = False,
        catch_duplicate_keys: bool = False,
        float_mode: Literal["float", "decimal", "lossless-float"] = False,
    ) -> Any:
        """
        Parse input bytes into a JSON object.
    
        Arguments:
            json_data: The JSON data to parse
            allow_inf_nan: Whether to allow infinity (`Infinity` an `-Infinity`) and `NaN` values to float fields.
                Defaults to True.
            cache_mode: cache Python strings to improve performance at the cost of some memory usage
                - True / 'all' - cache all strings
                - 'keys' - cache only object keys
                - False / 'none' - cache nothing
            partial_mode: How to handle incomplete strings:
                - False / 'off' - raise an exception if the input is incomplete
                - True / 'on' - allow incomplete JSON but discard the last string if it is incomplete
                - 'trailing-strings' - allow incomplete JSON, and include the last incomplete string in the output
            catch_duplicate_keys: if True, raise an exception if objects contain the same key multiple times
            float_mode: How to return floats: as a `float`, `Decimal` or `LosslessFloat`
    
        Returns:
            Python object built from the JSON input.
        """
    
    def cache_clear() -> None:
        """
        Reset the string cache.
        """
    
    def cache_usage() -> int:
        """
        get the size of the string cache.
    
        Returns:
            Size of the string cache in bytes.
        """
    

    Examples

    The main function provided by Jiter is from_json(), which accepts a bytes object containing JSON and returns a Python dictionary, list or other value.

    import jiter
    
    json_data = b'{"name": "John", "age": 30}'
    parsed_data = jiter.from_json(json_data)
    print(parsed_data)  # Output: {'name': 'John', 'age': 30}
    

    Handling Partial JSON

    Incomplete JSON objects can be parsed using the partial_mode= parameter.

    import jiter
    
    partial_json = b'{"name": "John", "age": 30, "city": "New Yor'
    
    # Raise error on incomplete JSON
    try:
        jiter.from_json(partial_json, partial_mode=False)
    except ValueError as e:
        print(f"Error: {e}")
    
    # Parse incomplete JSON, discarding incomplete last field
    result = jiter.from_json(partial_json, partial_mode=True)
    print(result)  # Output: {'name': 'John', 'age': 30}
    
    # Parse incomplete JSON, including incomplete last field
    result = jiter.from_json(partial_json, partial_mode='trailing-strings')
    print(result)  # Output: {'name': 'John', 'age': 30, 'city': 'New Yor'}
    

    Catching Duplicate Keys

    The catch_duplicate_keys=True option can be used to raise a ValueError if an object contains duplicate keys.

    import jiter
    
    json_with_dupes = b'{"foo": 1, "foo": 2}'
    
    # Default behavior (last value wins)
    result = jiter.from_json(json_with_dupes)
    print(result)  # Output: {'foo': 2}
    
    # Catch duplicate keys
    try:
        jiter.from_json(json_with_dupes, catch_duplicate_keys=True)
    except ValueError as e:
        print(f"Error: {e}")