jiter0.7.0
jiter0.7.0
Published
Fast iterable JSON parser.
pip install jiter
Package Downloads
Authors
Project URLs
Requires Python
>=3.8
Dependencies
jiter
This is a standalone version of the JSON parser used in pydantic-core
. The recommendation is to only use this package directly if you do not use pydantic
.
The API is extremely minimal:
def from_json(
json_data: bytes,
/,
*,
allow_inf_nan: bool = True,
cache_mode: Literal[True, False, "all", "keys", "none"] = "all",
partial_mode: Literal[True, False, "off", "on", "trailing-strings"] = False,
catch_duplicate_keys: bool = False,
float_mode: Literal["float", "decimal", "lossless-float"] = False,
) -> Any:
"""
Parse input bytes into a JSON object.
Arguments:
json_data: The JSON data to parse
allow_inf_nan: Whether to allow infinity (`Infinity` an `-Infinity`) and `NaN` values to float fields.
Defaults to True.
cache_mode: cache Python strings to improve performance at the cost of some memory usage
- True / 'all' - cache all strings
- 'keys' - cache only object keys
- False / 'none' - cache nothing
partial_mode: How to handle incomplete strings:
- False / 'off' - raise an exception if the input is incomplete
- True / 'on' - allow incomplete JSON but discard the last string if it is incomplete
- 'trailing-strings' - allow incomplete JSON, and include the last incomplete string in the output
catch_duplicate_keys: if True, raise an exception if objects contain the same key multiple times
float_mode: How to return floats: as a `float`, `Decimal` or `LosslessFloat`
Returns:
Python object built from the JSON input.
"""
def cache_clear() -> None:
"""
Reset the string cache.
"""
def cache_usage() -> int:
"""
get the size of the string cache.
Returns:
Size of the string cache in bytes.
"""
Examples
The main function provided by Jiter is from_json()
, which accepts a bytes object containing JSON and returns a Python dictionary, list or other value.
import jiter
json_data = b'{"name": "John", "age": 30}'
parsed_data = jiter.from_json(json_data)
print(parsed_data) # Output: {'name': 'John', 'age': 30}
Handling Partial JSON
Incomplete JSON objects can be parsed using the partial_mode=
parameter.
import jiter
partial_json = b'{"name": "John", "age": 30, "city": "New Yor'
# Raise error on incomplete JSON
try:
jiter.from_json(partial_json, partial_mode=False)
except ValueError as e:
print(f"Error: {e}")
# Parse incomplete JSON, discarding incomplete last field
result = jiter.from_json(partial_json, partial_mode=True)
print(result) # Output: {'name': 'John', 'age': 30}
# Parse incomplete JSON, including incomplete last field
result = jiter.from_json(partial_json, partial_mode='trailing-strings')
print(result) # Output: {'name': 'John', 'age': 30, 'city': 'New Yor'}
Catching Duplicate Keys
The catch_duplicate_keys=True
option can be used to raise a ValueError
if an object contains duplicate keys.
import jiter
json_with_dupes = b'{"foo": 1, "foo": 2}'
# Default behavior (last value wins)
result = jiter.from_json(json_with_dupes)
print(result) # Output: {'foo': 2}
# Catch duplicate keys
try:
jiter.from_json(json_with_dupes, catch_duplicate_keys=True)
except ValueError as e:
print(f"Error: {e}")