jsonschema-rs0.30.0
Published
A high-performance JSON Schema validator for Python
pip install jsonschema-rs
Package Downloads
Authors
Project URLs
Requires Python
>=3.8
jsonschema-rs
A high-performance JSON Schema validator for Python.
import jsonschema_rs
schema = {"maxLength": 5}
instance = "foo"
# One-off validation
try:
jsonschema_rs.validate(schema, "incorrect")
except jsonschema_rs.ValidationError as exc:
assert str(exc) == '''"incorrect" is longer than 5 characters
Failed validating "maxLength" in schema
On instance:
"incorrect"'''
# Build & reuse (faster)
validator = jsonschema_rs.validator_for(schema)
# Iterate over errors
for error in validator.iter_errors(instance):
print(f"Error: {error}")
print(f"Location: {error.instance_path}")
# Boolean result
assert validator.is_valid(instance)
⚠️ Upgrading from older versions? Check our Migration Guide for key changes.
Highlights
- 📚 Full support for popular JSON Schema drafts
- 🌐 Remote reference fetching (network/file)
- 🔧 Custom format validators
- ✨ Meta-schema validation for schema documents
Supported drafts
The following drafts are supported:
You can check the current status on the Bowtie Report.
Limitations
- No support for arbitrary precision numbers
Installation
To install jsonschema-rs
via pip
run the following command:
pip install jsonschema-rs
Usage
If you have a schema as a JSON string, then you could pass it to validator_for
to avoid parsing on the Python side:
import jsonschema_rs
validator = jsonschema_rs.validator_for('{"minimum": 42}')
...
You can use draft-specific validators for different JSON Schema versions:
import jsonschema_rs
# Automatic draft detection
validator = jsonschema_rs.validator_for({"minimum": 42})
# Draft-specific validators
validator = jsonschema_rs.Draft7Validator({"minimum": 42})
validator = jsonschema_rs.Draft201909Validator({"minimum": 42})
validator = jsonschema_rs.Draft202012Validator({"minimum": 42})
JSON Schema allows for format validation through the format
keyword. While jsonschema-rs
provides built-in validators for standard formats, you can also define custom format validators
for domain-specific string formats.
To implement a custom format validator:
- Define a function that takes a
str
and returns abool
. - Pass it with the
formats
argument. - Ensure validate_formats is set appropriately (especially for Draft 2019-09 and 2020-12).
import jsonschema_rs
def is_currency(value):
# The input value is always a string
return len(value) == 3 and value.isascii()
validator = jsonschema_rs.validator_for(
{"type": "string", "format": "currency"},
formats={"currency": is_currency},
validate_formats=True # Important for Draft 2019-09 and 2020-12
)
validator.is_valid("USD") # True
validator.is_valid("invalid") # False
Additional configuration options are available for fine-tuning the validation process:
validate_formats
: Override the draft-specific default behavior for format validation.ignore_unknown_formats
: Control whether unrecognized formats should be reported as errors.base_uri
- a base URI for all relative$ref
in the schema.
Example usage of these options:
import jsonschema_rs
validator = jsonschema_rs.Draft202012Validator(
{"type": "string", "format": "date"},
validate_formats=True,
ignore_unknown_formats=False
)
# This will validate the "date" format
validator.is_valid("2023-05-17") # True
validator.is_valid("not a date") # False
# With ignore_unknown_formats=False, using an unknown format will raise an error
invalid_schema = {"type": "string", "format": "unknown"}
try:
jsonschema_rs.Draft202012Validator(
invalid_schema, validate_formats=True, ignore_unknown_formats=False
)
except jsonschema_rs.ValidationError as exc:
assert str(exc) == '''Unknown format: 'unknown'. Adjust configuration to ignore unrecognized formats
Failed validating "format" in schema
On instance:
"unknown"'''
Meta-Schema Validation
JSON Schema documents can be validated against their meta-schemas to ensure they are valid schemas. jsonschema-rs
provides this functionality through the meta
module:
import jsonschema_rs
# Valid schema
schema = {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer", "minimum": 0}
},
"required": ["name"]
}
# Validate schema (draft is auto-detected)
assert jsonschema_rs.meta.is_valid(schema)
jsonschema_rs.meta.validate(schema) # No error raised
# Invalid schema
invalid_schema = {
"minimum": "not_a_number" # "minimum" must be a number
}
try:
jsonschema_rs.meta.validate(invalid_schema)
except jsonschema_rs.ValidationError as exc:
assert 'is not of type "number"' in str(exc)
Regular Expression Configuration
When validating schemas with regex patterns (in pattern
or patternProperties
), you can configure the underlying regex engine:
import jsonschema_rs
from jsonschema_rs import FancyRegexOptions, RegexOptions
# Default fancy-regex engine with backtracking limits
# (supports advanced features but needs protection against DoS)
validator = jsonschema_rs.validator_for(
{"type": "string", "pattern": "^(a+)+$"},
pattern_options=FancyRegexOptions(backtrack_limit=10_000)
)
# Standard regex engine for guaranteed linear-time matching
# (prevents regex DoS attacks but supports fewer features)
validator = jsonschema_rs.validator_for(
{"type": "string", "pattern": "^a+$"},
pattern_options=RegexOptions()
)
# Both engines support memory usage configuration
validator = jsonschema_rs.validator_for(
{"type": "string", "pattern": "^a+$"},
pattern_options=RegexOptions(
size_limit=1024 * 1024, # Maximum compiled pattern size
dfa_size_limit=10240 # Maximum DFA cache size
)
)
The available options:
-
FancyRegexOptions
: Default engine with lookaround and backreferences supportbacktrack_limit
: Maximum backtracking stepssize_limit
: Maximum compiled regex size in bytesdfa_size_limit
: Maximum DFA cache size in bytes
-
RegexOptions
: Safer engine with linear-time guaranteesize_limit
: Maximum compiled regex size in bytesdfa_size_limit
: Maximum DFA cache size in bytes
This configuration is crucial when working with untrusted schemas where attackers might craft malicious regex patterns.
External References
By default, jsonschema-rs
resolves HTTP references and file references from the local file system. You can implement a custom retriever to handle external references. Here's an example that uses a static map of schemas:
import jsonschema_rs
def retrieve(uri: str):
schemas = {
"https://example.com/person.json": {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"}
},
"required": ["name", "age"]
}
}
if uri not in schemas:
raise KeyError(f"Schema not found: {uri}")
return schemas[uri]
schema = {
"$ref": "https://example.com/person.json"
}
validator = jsonschema_rs.validator_for(schema, retriever=retrieve)
# This is valid
validator.is_valid({
"name": "Alice",
"age": 30
})
# This is invalid (missing "age")
validator.is_valid({
"name": "Bob"
}) # False
Schema Registry
For applications that frequently use the same schemas, you can create a registry to store and reference them efficiently:
import jsonschema_rs
# Create a registry with schemas
registry = jsonschema_rs.Registry([
("https://example.com/address.json", {
"type": "object",
"properties": {
"street": {"type": "string"},
"city": {"type": "string"}
}
}),
("https://example.com/person.json", {
"type": "object",
"properties": {
"name": {"type": "string"},
"address": {"$ref": "https://example.com/address.json"}
}
})
])
# Use the registry with any validator
validator = jsonschema_rs.validator_for(
{"$ref": "https://example.com/person.json"},
registry=registry
)
# Validate instances
assert validator.is_valid({
"name": "John",
"address": {"street": "Main St", "city": "Boston"}
})
The registry can be configured with a draft version and a retriever for external references:
import jsonschema_rs
registry = jsonschema_rs.Registry(
resources=[
(
"https://example.com/address.json",
{}
)
], # Your schemas
draft=jsonschema_rs.Draft202012, # Optional
retriever=lambda uri: {} # Optional
)
Error Handling
jsonschema-rs
provides detailed validation errors through the ValidationError
class, which includes both basic error information and specific details about what caused the validation to fail:
import jsonschema_rs
schema = {"type": "string", "maxLength": 5}
try:
jsonschema_rs.validate(schema, "too long")
except jsonschema_rs.ValidationError as error:
# Basic error information
print(error.message) # '"too long" is longer than 5 characters'
print(error.instance_path) # Location in the instance that failed
print(error.schema_path) # Location in the schema that failed
# Detailed error information via `kind`
if isinstance(error.kind, jsonschema_rs.ValidationErrorKind.MaxLength):
assert error.kind.limit == 5
print(f"Exceeded maximum length of {error.kind.limit}")
For a complete list of all error kinds and their attributes, see the type definitions file
Error Message Masking
When working with sensitive data, you might want to hide actual values from error messages. You can mask instance values in error messages by providing a placeholder:
import jsonschema_rs
schema = {
"type": "object",
"properties": {
"password": {"type": "string", "minLength": 8},
"api_key": {"type": "string", "pattern": "^[A-Z0-9]{32}$"}
}
}
# Use default masking (replaces values with "[REDACTED]")
validator = jsonschema_rs.validator_for(schema, mask="[REDACTED]")
try:
validator.validate({
"password": "123",
"api_key": "secret_key_123"
})
except jsonschema_rs.ValidationError as exc:
assert str(exc) == '''[REDACTED] does not match "^[A-Z0-9]{32}$"
Failed validating "pattern" in schema["properties"]["api_key"]
On instance["api_key"]:
[REDACTED]'''
Performance
jsonschema-rs
is designed for high performance, outperforming other Python JSON Schema validators in most scenarios:
- Up to 60-390x faster than
jsonschema
for complex schemas and large instances - Generally 3-7x faster than
fastjsonschema
on CPython
For detailed benchmarks, see our full performance comparison.
Python support
jsonschema-rs
supports CPython 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13.
Acknowledgements
This library draws API design inspiration from the Python jsonschema
package. We're grateful to the Python jsonschema
maintainers and contributors for their pioneering work in JSON Schema validation.
Support
If you have questions, need help, or want to suggest improvements, please use GitHub Discussions.
Sponsorship
If you find jsonschema-rs
useful, please consider sponsoring its development.
Contributing
We welcome contributions! Here's how you can help:
- Share your use cases
- Implement missing keywords
- Fix failing test cases from the JSON Schema test suite
See CONTRIBUTING.md for more details.
License
Licensed under MIT License.