kfp2.14.6
kfp2.14.6
Published
Kubeflow Pipelines SDK
pip install kfp
Package Downloads
Authors
Project URLs
Requires Python
>=3.9.0
Dependencies
- click
==8.1.8 - click-option-group
==0.5.7 - docstring-parser
<1,>=0.7.3 - google-api-core
!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5 - google-auth
<3,>=1.6.1 - google-cloud-storage
<4,>=2.2.1 - kfp-pipeline-spec
<3,>=2.14.3 - kfp-server-api
<3,>=2.14.3 - kubernetes
<31,>=8.0.0 - protobuf
<7.0,>=6.31.1 - PyYAML
<7,>=5.3 - requests-toolbelt
<2,>=0.8.0 - tabulate
<1,>=0.8.6 - urllib3
<3.0.0 - typing-extensions
<5,>=3.7.4; python_version < "3.9" - docker
; extra == "all" - kfp-kubernetes
==2.14.6; extra == "all" - kfp-kubernetes
==2.14.6; extra == "kubernetes"
Kubeflow Pipelines is a platform for building and deploying portable, scalable machine learning workflows based on Docker containers within the Kubeflow project.
Use Kubeflow Pipelines to compose a multi-step workflow (pipeline) as a graph of containerized tasks using Python code and/or YAML. Then, run your pipeline with specified pipeline arguments, rerun your pipeline with new arguments or data, schedule your pipeline to run on a recurring basis, organize your runs into experiments, save machine learning artifacts to compliant artifact registries, and visualize it all through the Kubeflow Dashboard.
Installation
To install kfp, run:
pip install kfp
Getting started
The following is an example of a simple pipeline that uses the kfp v2 syntax:
from kfp import dsl
import kfp
@dsl.component
def add(a: float, b: float) -> float:
'''Calculates sum of two arguments'''
return a + b
@dsl.pipeline(
name='Addition pipeline',
description='An example pipeline that performs addition calculations.')
def add_pipeline(
a: float = 1.0,
b: float = 7.0,
):
first_add_task = add(a=a, b=4.0)
second_add_task = add(a=first_add_task.output, b=b)
client = kfp.Client(host='<my-host-url>')
client.create_run_from_pipeline_func(
add_pipeline, arguments={
'a': 7.0,
'b': 8.0
})