Published
An integration package connecting Google VertexAI and LangChain
pip install langchain-google-vertexai
Package Downloads
Authors
Project URLs
Requires Python
<4.0,>=3.9
Dependencies
- anthropic
[vertexai]<1,>=0.35.0; extra == "anthropic"
- bottleneck
<2.0.0,>=1.4.2
- google-cloud-aiplatform
<2.0.0,>=1.92.0
- google-cloud-storage
<3.0.0,>=2.18.0
- httpx
<0.29.0,>=0.28.0
- httpx-sse
<0.5.0,>=0.4.0
- langchain-core
<0.4,>=0.3.65
- langchain-mistralai
<1,>=0.2.0; extra == "mistral"
- numexpr
<3.0.0,>=2.8.6
- pyarrow
<20.0.0,>=19.0.1
- pydantic
<3.0,>=2.9
- validators
<1,>=0.22.0
langchain-google-vertexai
This package contains the LangChain integrations for Google Cloud generative models.
Contents
Installation
pip install -U langchain-google-vertexai
Chat Models
ChatVertexAI
class exposes models such as gemini-pro
and other Gemini variants.
To use, you should have a Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")
Multimodal inputs
Gemini supports image inputs when providing a single chat message. Example:
from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name="gemini-2.0-flash-001")
message = HumanMessage(
content=[
{
"type": "text",
"text": "What's in this image?",
},
{"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
]
)
llm.invoke([message])
The value of image_url
can be:
- A public image URL
- An accessible Google Cloud Storage (GCS) file (e.g.,
"gcs://path/to/file.png"
) - A base64 encoded image (e.g.,
""
)
Embeddings
Google Cloud embeddings models can be used as:
from langchain_google_vertexai import VertexAIEmbeddings
embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")
LLMs
Use Google Cloud's generative AI models as LangChain LLMs:
from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm
question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))
Code Generation
You can use Gemini models for code generation tasks to generate code snippets, functions, or scripts in various programming languages.
Example: Generate a Python function
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name="gemini-pro", temperature=0.3, max_output_tokens=1000)
prompt = "Write a Python function that checks if a string is a valid email address."
generated_code = llm.invoke(prompt)
print(generated_code)
Example: Generate JavaScript code
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name="gemini-pro", temperature=0.3, max_output_tokens=1000)
prompt_js = "Write a JavaScript function that returns the factorial of a number."
print(llm.invoke(prompt_js))
Notes
- Adjust
temperature
to control creativity (higher values increase randomness). - Use
max_output_tokens
to limit the length of the generated code. - Gemini models are well-suited for code generation tasks with advanced understanding of programming concepts.