langchain-memgraph0.1.5
Published
An integration package connecting Memgraph and LangChain
pip install langchain-memgraph
Package Downloads
Authors
Requires Python
>=3.10
Dependencies
- langchain-core
>=0.3.15
- langchain
>=0.3.25
- memgraph-toolbox
>=0.1.2
- neo4j
>=5.28.1
- langchain-core
>=0.3.51; extra == "test"
- langchain-experimental
>=0.3.4; extra == "test"
- langchain-openai
>=0.3.12; extra == "test"
- langchain-tests
>=0.3.17; extra == "test"
- langgraph
>=0.3.11; extra == "test"
- pytest-asyncio
>=0.26.0; extra == "test"
- pytest-socket
>=0.7.0; extra == "test"
- pytest-watcher
>=0.3.4; extra == "test"
- pytest
>=8.3.5; extra == "test"
- python-dotenv
>=1.0.1; extra == "test"
๐ฆ๏ธ๐ LangChain Memgraph
This package contains the LangChain integration with Memgraph graph database.
๐ฆ Installation
In order to start running the examples or tests you need to install the LangChain integration.
You can do it via pip:
pip install -U langchain-memgraph
Before running the examples below, make sure to start Memgraph, you can do it via following command:
docker run -p 7687:7687 \
--name memgraph \
memgraph/memgraph-mage:latest \
--schema-info-enabled=true
๐ป Integration features
Memgraph
The Memgraph
class is a wrapper around the database client that supports the
query operation.
import os
from langchain_memgraph.graphs.memgraph import MemgraphLangChain
url = os.getenv("MEMGRAPH_URL", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USER", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")
graph = MemgraphLangChain(url=url, username=username, password=password)
results = graph.query("MATCH (n) RETURN n LIMIT 1")
print(results)
MemgraphQAChain
The MemgraphQAChain
class enables natural language interactions with a Memgraph database.
It uses an LLM and the database's schema to translate a user's question into a Cypher query, which is executed against the database.
The resulting data is then sent along with the user's question to the LLM to generate a natural language response.
For the example below you need to install an extra dependency the lanchain_openai
, you can do it by running:
pip install lanchain_openai
import os
from langchain_memgraph.graphs.memgraph import MemgraphLangChain
from langchain_memgraph.chains.graph_qa import MemgraphQAChain
from langchain_openai import ChatOpenAI
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY", "")
url = os.getenv("MEMGRAPH_URL", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USER", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")
graph = MemgraphLangChain(url=url, username=username, password=password, refresh_schema=False)
chain = MemgraphQAChain.from_llm(
ChatOpenAI(temperature=0),
graph=graph,
model_name="gpt-4-turbo",
allow_dangerous_requests=True,
)
response = chain.invoke("Is there a any Person node in the dataset?")
result = response["result"].lower()
print(result)
Memgraph toolkit
The MemgraphToolkit
contains different tools agents can leverage to perform specific tasks the user has given them. Toolkit
needs a database object and LLM access since different tools leverage different operations.
Currently supported tools:
- QueryMemgraphTool - Basic Cypher query execution tool
import os
import pytest
from dotenv import load_dotenv
from langchain.chat_models import init_chat_model
from langchain_memgraph import MemgraphToolkit
from langchain_memgraph.graphs.memgraph import MemgraphLangChain
from langgraph.prebuilt import create_react_agent
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY", "")
url = os.getenv("MEMGRAPH_URL", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USER", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")
llm = init_chat_model("gpt-4o-mini", model_provider="openai")
db = MemgraphLangChain(url=url, username=username, password=password)
toolkit = MemgraphToolkit(db=db, llm=llm)
agent_executor = create_react_agent(
llm, toolkit.get_tools(), prompt="You will get a cypher query, try to execute it on the Memgraph database."
)
example_query = "MATCH (n) WHERE n.name = 'Jon Snow' RETURN n"
events = agent_executor.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
last_event = None
for event in events:
last_event = event
event["messages"][-1].pretty_print()
print(last_event)
๐งช Test
Install the test dependencies to run the tests:
- Install dependencies
poetry install --with test,test_integration
- Start Memgraph in the background.
- Create an
.env
file that points to Memgraph and OpenAI API
MEMGRAPH_URL=bolt://localhost:7687
MEMGRAPH_USER=
MEMGRAPH_PASSWORD=
OPENAI_API_KEY=your_openai_api_key
Run tests
Run the unit tests using:
make tests
Run the integration test using:
make integration_tests
๐งน Code Formatting and Linting
Install the codespell
, lint
, and typing dependencies to lint and format your code:
poetry install --with codespell,lint,typing
To format your code, run:
make format
To lint it, run:
make lint