Oven logo

Oven

๐Ÿฆœ๏ธ๐Ÿ”— LangChain Memgraph

This package contains the LangChain integration with Memgraph graph database.

๐Ÿ“ฆ Installation

In order to start running the examples or tests you need to install the LangChain integration.

You can do it via pip:

pip install -U langchain-memgraph

Before running the examples below, make sure to start Memgraph, you can do it via following command:

docker run -p 7687:7687 \
  --name memgraph \
  memgraph/memgraph-mage:latest \
  --schema-info-enabled=true

๐Ÿ’ป Integration features

Memgraph

The Memgraph class is a wrapper around the database client that supports the query operation.

import os
from langchain_memgraph.graphs.memgraph import MemgraphLangChain

url = os.getenv("MEMGRAPH_URL", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USER", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")

graph = MemgraphLangChain(url=url, username=username, password=password)
results = graph.query("MATCH (n) RETURN n LIMIT 1")
print(results)

MemgraphQAChain

The MemgraphQAChain class enables natural language interactions with a Memgraph database. It uses an LLM and the database's schema to translate a user's question into a Cypher query, which is executed against the database. The resulting data is then sent along with the user's question to the LLM to generate a natural language response.

For the example below you need to install an extra dependency the lanchain_openai, you can do it by running:

pip install lanchain_openai
import os
from langchain_memgraph.graphs.memgraph import MemgraphLangChain
from langchain_memgraph.chains.graph_qa import MemgraphQAChain
from langchain_openai import ChatOpenAI

os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY", "")
url = os.getenv("MEMGRAPH_URL", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USER", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")

graph = MemgraphLangChain(url=url, username=username, password=password, refresh_schema=False)

chain = MemgraphQAChain.from_llm(
    ChatOpenAI(temperature=0),
    graph=graph,
    model_name="gpt-4-turbo",
    allow_dangerous_requests=True,
)
response = chain.invoke("Is there a any Person node in the dataset?")
result = response["result"].lower()
print(result)

Memgraph toolkit

The MemgraphToolkit contains different tools agents can leverage to perform specific tasks the user has given them. Toolkit needs a database object and LLM access since different tools leverage different operations.

Currently supported tools:

  1. QueryMemgraphTool - Basic Cypher query execution tool
import os
import pytest
from dotenv import load_dotenv
from langchain.chat_models import init_chat_model
from langchain_memgraph import MemgraphToolkit
from langchain_memgraph.graphs.memgraph import MemgraphLangChain
from langgraph.prebuilt import create_react_agent

os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY", "")
url = os.getenv("MEMGRAPH_URL", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USER", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")

llm = init_chat_model("gpt-4o-mini", model_provider="openai")

db = MemgraphLangChain(url=url, username=username, password=password)
toolkit = MemgraphToolkit(db=db, llm=llm)

agent_executor = create_react_agent(
    llm, toolkit.get_tools(), prompt="You will get a cypher query, try to execute it on the Memgraph database."
)

example_query = "MATCH (n) WHERE n.name = 'Jon Snow' RETURN n"
events = agent_executor.stream(
    {"messages": [("user", example_query)]},
    stream_mode="values",
)

last_event = None
for event in events:
    last_event = event
    event["messages"][-1].pretty_print()

print(last_event)

๐Ÿงช Test

Install the test dependencies to run the tests:

  1. Install dependencies
poetry install --with test,test_integration
  1. Start Memgraph in the background.
  2. Create an .env file that points to Memgraph and OpenAI API
MEMGRAPH_URL=bolt://localhost:7687
MEMGRAPH_USER=
MEMGRAPH_PASSWORD=
OPENAI_API_KEY=your_openai_api_key

Run tests

Run the unit tests using:

make tests

Run the integration test using:

make integration_tests

๐Ÿงน Code Formatting and Linting

Install the codespell, lint, and typing dependencies to lint and format your code:

poetry install --with codespell,lint,typing

To format your code, run:

make format

To lint it, run:

make lint