Published
An MkDocs plugin that provides Ultralytics Docs customizations at https://docs.ultralytics.com.
pip install mkdocs-ultralytics-plugin
Package Downloads
Authors
Project URLs
Requires Python
>=3.8
š MkDocs Ultralytics Plugin
Welcome to the MkDocs Ultralytics Plugin! š This powerful tool enhances your MkDocs, Zensical, or any static site documentation with advanced Search Engine Optimization (SEO) features, interactive social elements, and structured data support. It automates the generation of essential meta tags, incorporates social sharing capabilities, and adds JSON-LD structured data to elevate user engagement and improve your documentation's visibility on the web.
Two modes available:
- š Plugin Mode: Real-time processing during MkDocs builds
- š Postprocess Mode: Process any generated static site HTML after build
⨠Features
This tool seamlessly integrates valuable features into your documentation site:
- Meta Tag Generation: Automatically creates meta description and image tags using the first paragraph and image found on each page, crucial for SEO and social previews.
- Keyword Customization: Allows you to define specific meta keywords directly within your Markdown front matter for targeted SEO.
- Social Media Optimization: Generates Open Graph and Twitter Card meta tags to ensure your content looks great when shared on social platforms.
- Simple Sharing: Inserts convenient share buttons for Twitter and LinkedIn at the end of your content, encouraging readers to share.
- Git Insights: Gathers and displays Git commit information, including update dates and authors, directly within the page footer for transparency.
- JSON-LD Support: Adds structured data in JSON-LD format, helping search engines understand your content better and potentially enabling rich results.
- FAQ Parsing: Automatically parses FAQ sections (if present) and includes them in the structured data for enhanced search visibility.
- Copy for LLM: Adds a button to copy page content in Markdown format, optimized for sharing with AI assistants.
- Customizable Styling: Includes optional inline CSS to maintain consistent styling across your documentation, aligning with themes like MkDocs Material.
š ļø Installation
Install via pip:
pip install mkdocs-ultralytics-plugin
Or install from source for development:
git clone https://github.com/ultralytics/mkdocs
cd mkdocs
pip install -e .
š» Usage
š Plugin Mode (MkDocs)
Activate the plugin in your mkdocs.yml:
plugins:
- search
- ultralytics:
add_desc: False
add_image: True
add_authors: True
add_json_ld: True
add_share_buttons: True
default_image: https://example.com/image.png
default_author: [email protected]
Then build normally:
mkdocs build
mkdocs serve
š Postprocess Mode (Zensical, Hugo, Jekyll, etc.)
For static site generators that don't support MkDocs plugins, use the standalone postprocess script.
Step 1: Create postprocess.py in your project root:
from plugin import postprocess_site
if __name__ == "__main__":
postprocess_site(
site_dir="site", # Your build output directory
docs_dir="docs", # Your source docs directory
site_url="https://example.com",
default_image="https://example.com/image.png",
default_author="[email protected]",
add_desc=True,
add_image=True,
add_authors=True,
add_json_ld=True,
add_share_buttons=True,
add_css=True,
add_copy_llm=True,
verbose=True,
)
Step 2: Build your site and run postprocess:
# For Zensical
zensical build && python postprocess.py
# For MkDocs (without plugin)
mkdocs build && python postprocess.py
# For Hugo
hugo && python postprocess.py
# For Jekyll
jekyll build && python postprocess.py
āļø Configuration Options
Both modes support the same configuration options:
| Option | Type | Default | Description |
|---|---|---|---|
verbose | bool | True | Enable detailed console output |
enabled | bool | True | Enable/disable processing |
default_image | str | None | Fallback image URL for meta tags |
default_author | str | None | Default GitHub author email |
add_desc | bool | True | Generate meta description tags |
add_image | bool | True | Generate meta image tags |
add_keywords | bool | True | Generate meta keyword tags |
add_share_buttons | bool | True | Add social share buttons |
add_authors | bool | False | Display Git author info |
add_json_ld | bool | False | Add JSON-LD structured data |
add_css | bool | True | Include inline CSS styles |
add_copy_llm | bool | True | Add "Copy for LLM" button |
š§© How It Works
The tool processes HTML pages to enhance them with metadata and interactive elements:
Meta Description Generation
Extracts the first paragraph from your content and generates <meta name="description"> tags for SEO.
Meta Image Tagging
Identifies the first image in the content or uses the default image for og:image and twitter:image tags.
Social Share Buttons
Appends pre-styled Twitter and LinkedIn sharing buttons to your content.
Git Information Display
Retrieves Git history to show creation/update dates and author avatars at the bottom of pages.
JSON-LD Structured Data
Generates Article and FAQPage schema for better search engine understanding.
Copy for LLM Button
Adds a button next to the "Edit this page" button that fetches the raw Markdown and copies it to clipboard, perfect for sharing with AI assistants.
š” Architecture
The codebase is organized for maximum code reuse:
plugin/
āāā __init__.py # Package metadata
āāā processor.py # ā Core HTML processing logic
āāā main.py # MkDocs plugin wrapper
āāā postprocess.py # Standalone postprocess wrapper
āāā utils.py # Helper functions
Both plugin mode and postprocess mode use the same process_html() function in processor.py, ensuring identical output regardless of which mode you use.
š Plugin Mode vs Postprocess Mode
| Feature | Plugin Mode | Postprocess Mode |
|---|---|---|
| Works with | MkDocs only | Any static site generator |
| Processing time | During build (per-page) | After build (batch) |
| Configuration | mkdocs.yml | Python script |
| Hot reload | ā Yes | ā No (rebuild required) |
| Git info | ā Yes | ā Yes |
| Best for | MkDocs projects | Zensical, Hugo, Jekyll, etc. |
š¤ Contribute
Collaboration fuels innovation! š¤ The success of Ultralytics' open-source projects thrives on community contributions. We welcome your involvement, whether it's fixing bugs, proposing new features, improving documentation, engaging in discussions, or sharing how you use Ultralytics tools.
Please see our Contributing Guide for details. Filling out our Survey also provides valuable feedback. We sincerely appreciate šāāļø every contribution!
š License
Ultralytics provides two licensing options:
- AGPL-3.0 License: Ideal for students, researchers, and enthusiasts, this OSI-approved license promotes open collaboration and knowledge sharing. See the LICENSE file for details.
- Enterprise License: Designed for commercial applications, this license allows seamless integration of Ultralytics software into commercial products, bypassing AGPL-3.0 requirements. Visit Ultralytics Licensing for details.
āļø Connect with Us
Encountered a bug or have an idea? Visit GitHub Issues to report problems or suggest enhancements. For discussions and community support, join our Discord server and check out Ultralytics Reddit.







