Oven logo

Oven

Published

OpenInference instrumentation utilities

pip install openinference-instrumentation

Package Downloads

Weekly DownloadsMonthly Downloads

Project URLs

Requires Python

<3.14,>=3.8

OpenInference Instrumentation

PyPI Version

Utility functions for OpenInference instrumentation.

Installation

pip install openinference-instrumentation

Customizing Spans

The openinference-instrumentation package offers utilities to track important application metadata such as sessions and metadata using Python context managers:

  • using_session: to specify a session ID to track and group a multi-turn conversation with a user
  • using_user: to specify a user ID to track different conversations with a given user
  • using_metadata: to add custom metadata, that can provide extra information that supports a wide range of operational needs
  • using_tag: to add tags, to help filter on specific keywords
  • using_prompt_template: to reflect the prompt template used, with its version and variables. This is useful for prompt template management
  • using_attributes: it helps handling multiple of the previous options at once in a concise manner

For example:

from openinference.instrumentation import using_attributes
tags = ["business_critical", "simple", ...]
metadata = {
    "country": "United States",
    "topic":"weather",
    ...
}
prompt_template = "Please describe the weather forecast for {city} on {date}"
prompt_template_variables = {"city": "Johannesburg", "date":"July 11"}
prompt_template_version = "v1.0"
with using_attributes(
    session_id="my-session-id",
    user_id="my-user-id",
    metadata=metadata,
    tags=tags,
    prompt_template=prompt_template,
    prompt_template_version=prompt_template_version,
    prompt_template_variables=prompt_template_variables,
):
    # Calls within this block will generate spans with the attributes:
    # "session.id" = "my-session-id"
    # "user.id" = "my-user-id"
    # "metadata" = "{\"key-1\": value_1, \"key-2\": value_2, ... }" # JSON serialized
    # "tag.tags" = "["tag_1","tag_2",...]"
    # "llm.prompt_template.template" = "Please describe the weather forecast for {city} on {date}"
    # "llm.prompt_template.variables" = "{\"city\": \"Johannesburg\", \"date\": \"July 11\"}" # JSON serialized
    # "llm.prompt_template.version " = "v1.0"
    ...

You can read more about this in our docs.

Tracing Configuration

This package contains the central TraceConfig class, which lets you specify a tracing configuration that lets you control settings like data privacy and payload sizes. For instance, you may want to keep sensitive information from being logged for security reasons, or you may want to limit the size of the base64 encoded images logged to reduced payload size.

In addition, you an also use environment variables, read more here. The following is an example of using the TraceConfig object:

from openinference.instrumentation import TraceConfig
config = TraceConfig(
    hide_inputs=hide_inputs,
    hide_outputs=hide_outputs,
    hide_input_messages=hide_input_messages,
    hide_output_messages=hide_output_messages,
    hide_input_images=hide_input_images,
    hide_input_text=hide_input_text,
    hide_output_text=hide_output_text,
    base64_image_max_length=base64_image_max_length,
)
tracer_provider=...
# This example uses the OpenAIInstrumentor, but it works with any of our auto instrumentors
OpenAIInstrumentor().instrument(tracer_provider=tracer_provider, config=config)