Oven logo

Oven

Published

Python bindings for a fast RLE decoder/encoder, with a focus on use as a plugin for pylibjpeg

pip install pylibjpeg-rle

Package Downloads

Weekly DownloadsMonthly Downloads

Authors

Project URLs

Requires Python

>=3.10

Build status Test coverage PyPI versions Python versions Code style: black

pylibjpeg-rle

A fast DICOM (PackBits) RLE plugin for pylibjpeg, written in Rust with a Python wrapper.

Linux, MacOS and Windows are all supported.

Installation

Installing the current release

pip install pylibjpeg-rle

Installing the development version

Make sure Python, Git and Rust are installed. For Windows, you also need to install Microsoft's C++ Build Tools.

git clone https://github.com/pydicom/pylibjpeg-rle
cd pylibjpeg-rle
python -m pip install .

Supported Transfer Syntaxes

UIDDescriptionDecodingEncoding
1.2.840.10008.1.2.5RLE LosslessYesYes

Usage

Decoding

With pylibjpeg
from pydicom import dcmread
from pydicom.data import get_testdata_file

ds = dcmread(get_testdata_file("OBXXXX1A_rle.dcm"))
arr = ds.pixel_array
Standalone with pydicom

Alternatively you can use the included functions to decode a given dataset:

from rle import pixel_array, generate_frames

# Return the entire Pixel Data as an ndarray
arr = pixel_array(ds)

# Generator function that only processes 1 frame at a time,
# may help reduce memory usage when dealing with large Pixel Data
for arr in generate_frames(ds):
    print(arr.shape)

Encoding

Standalone with pydicom

Convert uncompressed pixel data to RLE encoding and save:

from pydicom import dcmread
from pydicom.data import get_testdata_file
from pydicom.uid import RLELossless

from rle import pixel_data

# Get the uncompressed pixel data
ds = dcmread(get_testdata_file("OBXXXX1A.dcm"))
arr = ds.pixel_array

# RLE encode and encapsulate `arr`
ds.PixelData = pixel_data(arr, ds)
# Set the correct *Transfer Syntax UID*
ds.file_meta.TransferSyntaxUID = RLELossless
ds.save_as('as_rle.dcm')

Benchmarks

Decoding

Time per 1000 decodes, pydicom's default RLE decoder vs. pylibjpeg-rle:

DatasetPixelsBytespydicompylibjpeg-rle
OBXXXX1A_rle.dcm480,000480,0005.7 s1.1 s
OBXXXX1A_rle_2frame.dcm960,000960,00011.5 s2.1 s
SC_rgb_rle.dcm10,00030,0000.28 s0.19 s
SC_rgb_rle_2frame.dcm20,00060,0000.45 s0.28 s
MR_small_RLE.dcm4,0968,1920.46 s0.15 s
emri_small_RLE.dcm40,96081,9201.8 s0.67 s
SC_rgb_rle_16bit.dcm10,00060,0000.48 s0.25 s
SC_rgb_rle_16bit_2frame.dcm20,000120,0000.86 s0.39 s
rtdose_rle_1frame.dcm1004000.16 s0.13 s
rtdose_rle.dcm1,5006,0001.0 s0.64 s
SC_rgb_rle_32bit.dcm10,000120,0000.82 s0.35 s
SC_rgb_rle_32bit_2frame.dcm20,000240,0001.5 s0.60 s

Encoding

Time per 1000 encodes, pydicom's default RLE encoder vs. pylibjpeg-rle and python-gdcm:

DatasetPixelsBytespydicompylibjpeg-rlepython-gdcm
OBXXXX1A.dcm480,000480,00030.6 s1.4 s1.5 s
SC_rgb.dcm10,00030,0001.9 s0.11 s0.21 s
MR_small.dcm4,0968,1923.0 s0.11 s0.29 s
SC_rgb_16bit.dcm10,00060,0003.6 s0.18 s0.28 s
rtdose_1frame.dcm1004000.28 s0.04 s0.14 s
SC_rgb_32bit.dcm10,000120,0007.1 s0.32 s0.43 s