Oven logo

Oven

Published

"Python bindings for a fast RLE decoder/encoder, with a focus on ""use as a plugin for pylibjpeg"

pip install pylibjpeg-rle

Package Downloads

Weekly DownloadsMonthly Downloads

Project URLs

Requires Python

>=3.8

Dependencies

Build status Test coverage PyPI versions Python versions Code style: black

pylibjpeg-rle

A fast DICOM (PackBits) RLE plugin for pylibjpeg, written in Rust with a Python 3.7+ wrapper.

Linux, MacOS and Windows are all supported.

Installation

Installing the current release

pip install pylibjpeg-rle

Installing the development version

Make sure Python, Git and Rust are installed. For Windows, you also need to install Microsoft's C++ Build Tools.

git clone https://github.com/pydicom/pylibjpeg-rle
cd pylibjpeg-rle
python -m pip install .

Supported Transfer Syntaxes

UIDDescriptionDecodingEncoding
1.2.840.10008.1.2.5RLE LosslessYesYes

Usage

Decoding

With pylibjpeg
from pydicom import dcmread
from pydicom.data import get_testdata_file

ds = dcmread(get_testdata_file("OBXXXX1A_rle.dcm"))
arr = ds.pixel_array
Standalone with pydicom

Alternatively you can use the included functions to decode a given dataset:

from rle import pixel_array, generate_frames

# Return the entire Pixel Data as an ndarray
arr = pixel_array(ds)

# Generator function that only processes 1 frame at a time,
# may help reduce memory usage when dealing with large Pixel Data
for arr in generate_frames(ds):
    print(arr.shape)

Encoding

Standalone with pydicom

Convert uncompressed pixel data to RLE encoding and save:

from pydicom import dcmread
from pydicom.data import get_testdata_file
from pydicom.uid import RLELossless

from rle import pixel_data

# Get the uncompressed pixel data
ds = dcmread(get_testdata_file("OBXXXX1A.dcm"))
arr = ds.pixel_array

# RLE encode and encapsulate `arr`
ds.PixelData = pixel_data(arr, ds)
# Set the correct *Transfer Syntax UID*
ds.file_meta.TransferSyntaxUID = RLELossless
ds.save_as('as_rle.dcm')

Benchmarks

Decoding

Time per 1000 decodes, pydicom's default RLE handler vs. pylibjpeg-rle

DatasetPixelsBytespydicompylibjpeg-rle
OBXXXX1A_rle.dcm480,000480,0004.89 s0.79 s
OBXXXX1A_rle_2frame.dcm960,000960,0009.89 s1.65 s
SC_rgb_rle.dcm10,00030,0000.20 s0.15 s
SC_rgb_rle_2frame.dcm20,00060,0000.32 s0.18 s
MR_small_RLE.dcm4,0968,1920.35 s0.13 s
emri_small_RLE.dcm40,96081,9201.13 s0.28 s
SC_rgb_rle_16bit.dcm10,00060,0000.33 s0.17 s
SC_rgb_rle_16bit_2frame.dcm20,000120,0000.56 s0.21 s
rtdose_rle_1frame.dcm1004000.12 s0.13 s
rtdose_rle.dcm1,5006,0000.53 s0.26 s
SC_rgb_rle_32bit.dcm10,000120,0000.56 s0.19 s
SC_rgb_rle_32bit_2frame.dcm20,000240,0001.03 s0.28 s

Encoding

Time per 1000 encodes, pydicom's default RLE handler vs. pylibjpeg-rle

DatasetPixelsBytespydicompylibjpeg-rle
OBXXXX1A.dcm480,000480,00030.7 s1.36 s
SC_rgb.dcm10,00030,0001.80 s0.09 s
MR_small.dcm4,0968,1922.29 s0.04 s
SC_rgb_16bit.dcm10,00060,0003.57 s0.17 s
rtdose_1frame.dcm1004000.19 s0.003 s
SC_rgb_32bit.dcm10,000120,0007.20 s0.33 s