Oven logo

Oven

Published

A lightweight and fast pure python ECDSA library

pip install starkbank-ecdsa

Package Downloads

Weekly DownloadsMonthly Downloads

Project URLs

Requires Python

Dependencies

    A lightweight and fast pure Python ECDSA

    Overview

    We tried other Python libraries such as python-ecdsa, fast-ecdsa and other less famous ones, but we didn't find anything that suited our needs. The first one was pure Python, but it was too slow. The second one mixed Python and C and it was really fast, but we were unable to use it in our current infrastructure, which required pure Python code.

    For this reason, we decided to create something simple, compatible with OpenSSL and fast using elegant math such as Jacobian Coordinates to speed up the ECDSA. Starkbank-ECDSA is fully compatible with Python2 and Python3.

    Installation

    To install StarkBank`s ECDSA-Python, run:

    pip install starkbank-ecdsa
    

    Curves

    We currently support secp256k1, but you can add more curves to the project. You just need to use the curve.add() function.

    Speed

    We ran a test on a MAC Pro i7 2017. The libraries were run 100 times and the averages displayed bellow were obtained:

    Librarysignverify
    python-ecdsa121.3ms65.1ms
    fast-ecdsa0.1ms0.2ms
    starkbank-ecdsa4.1ms7.8ms

    Our pure Python code cannot compete with C based libraries, but it's 6x faster to verify and 23x faster to sign than other pure Python libraries.

    Sample Code

    How to sign a json message for Stark Bank:

    from json import dumps
    from ellipticcurve.ecdsa import Ecdsa
    from ellipticcurve.privateKey import PrivateKey
    
    
    # Generate privateKey from PEM string
    privateKey = PrivateKey.fromPem("""
        -----BEGIN EC PARAMETERS-----
        BgUrgQQACg==
        -----END EC PARAMETERS-----
        -----BEGIN EC PRIVATE KEY-----
        MHQCAQEEIODvZuS34wFbt0X53+P5EnSj6tMjfVK01dD1dgDH02RzoAcGBSuBBAAK
        oUQDQgAE/nvHu/SQQaos9TUljQsUuKI15Zr5SabPrbwtbfT/408rkVVzq8vAisbB
        RmpeRREXj5aog/Mq8RrdYy75W9q/Ig==
        -----END EC PRIVATE KEY-----
    """)
    
    # Create message from json
    message = dumps({
        "transfers": [
            {
                "amount": 100000000,
                "taxId": "594.739.480-42",
                "name": "Daenerys Targaryen Stormborn",
                "bankCode": "341",
                "branchCode": "2201",
                "accountNumber": "76543-8",
                "tags": ["daenerys", "targaryen", "transfer-1-external-id"]
            }
        ]
    })
    
    signature = Ecdsa.sign(message, privateKey)
    
    # Generate Signature in base64. This result can be sent to Stark Bank in the request header as the Digital-Signature parameter.
    print(signature.toBase64())
    
    # To double check if the message matches the signature, do this:
    publicKey = privateKey.publicKey()
    
    print(Ecdsa.verify(message, signature, publicKey))
    
    

    Simple use:

    from ellipticcurve.ecdsa import Ecdsa
    from ellipticcurve.privateKey import PrivateKey
    
    
    # Generate new Keys
    privateKey = PrivateKey()
    publicKey = privateKey.publicKey()
    
    message = "My test message"
    
    # Generate Signature
    signature = Ecdsa.sign(message, privateKey)
    
    # To verify if the signature is valid
    print(Ecdsa.verify(message, signature, publicKey))
    
    

    How to add more curves:

    from ellipticcurve import curve, PrivateKey, PublicKey
    
    newCurve = curve.CurveFp(
        name="frp256v1",
        A=0xf1fd178c0b3ad58f10126de8ce42435b3961adbcabc8ca6de8fcf353d86e9c00,
        B=0xee353fca5428a9300d4aba754a44c00fdfec0c9ae4b1a1803075ed967b7bb73f,
        P=0xf1fd178c0b3ad58f10126de8ce42435b3961adbcabc8ca6de8fcf353d86e9c03,
        N=0xf1fd178c0b3ad58f10126de8ce42435b53dc67e140d2bf941ffdd459c6d655e1,
        Gx=0xb6b3d4c356c139eb31183d4749d423958c27d2dcaf98b70164c97a2dd98f5cff,
        Gy=0x6142e0f7c8b204911f9271f0f3ecef8c2701c307e8e4c9e183115a1554062cfb,
        oid=[1, 2, 250, 1, 223, 101, 256, 1]
    )
    
    curve.add(newCurve)
    
    publicKeyPem = """-----BEGIN PUBLIC KEY-----
    MFswFQYHKoZIzj0CAQYKKoF6AYFfZYIAAQNCAATeEFFYiQL+HmDYTf+QDmvQmWGD
    dRJPqLj11do8okvkSxq2lwB6Ct4aITMlCyg3f1msafc/ROSN/Vgj69bDhZK6
    -----END PUBLIC KEY-----"""
    
    publicKey = PublicKey.fromPem(publicKeyPem)
    
    print(publicKey.toPem())
    

    How to generate compressed public key:

    from ellipticcurve import PrivateKey, PublicKey
    
    privateKey = PrivateKey()
    publicKey = privateKey.publicKey()
    compressedPublicKey = publicKey.toCompressed()
    
    print(compressedPublicKey)
    

    How to recover a compressed public key:

    from ellipticcurve import PrivateKey, PublicKey
    
    compressedPublicKey = "0252972572d465d016d4c501887b8df303eee3ed602c056b1eb09260dfa0da0ab2"
    publicKey = PublicKey.fromCompressed(compressedPublicKey)
    
    print(publicKey.toPem())
    

    OpenSSL

    This library is compatible with OpenSSL, so you can use it to generate keys:

    openssl ecparam -name secp256k1 -genkey -out privateKey.pem
    openssl ec -in privateKey.pem -pubout -out publicKey.pem
    

    Create a message.txt file and sign it:

    openssl dgst -sha256 -sign privateKey.pem -out signatureDer.txt message.txt
    

    To verify, do this:

    from ellipticcurve.ecdsa import Ecdsa
    from ellipticcurve.signature import Signature
    from ellipticcurve.publicKey import PublicKey
    from ellipticcurve.utils.file import File
    
    
    publicKeyPem = File.read("publicKey.pem")
    signatureDer = File.read("signatureDer.txt", "rb")
    message = File.read("message.txt")
    
    publicKey = PublicKey.fromPem(publicKeyPem)
    signature = Signature.fromDer(signatureDer)
    
    print(Ecdsa.verify(message, signature, publicKey))
    
    

    You can also verify it on terminal:

    openssl dgst -sha256 -verify publicKey.pem -signature signatureDer.txt message.txt
    

    NOTE: If you want to create a Digital Signature to use with Stark Bank, you need to convert the binary signature to base64.

    openssl base64 -in signatureDer.txt -out signatureBase64.txt
    

    You can do the same with this library:

    from ellipticcurve.signature import Signature
    from ellipticcurve.utils.file import File
    
    
    signatureDer = File.read("signatureDer.txt", "rb")
    
    signature = Signature.fromDer(signatureDer)
    
    print(signature.toBase64())
    

    Run unit tests

    python3 -m unittest discover
    python2 -m unittest discover