strands-agents1.9.1
Published
A model-driven approach to building AI agents in just a few lines of code
pip install strands-agents
Package Downloads
Authors
Project URLs
Requires Python
>=3.10
Dependencies
- boto3
<2.0.0,>=1.26.0
- botocore
<2.0.0,>=1.29.0
- docstring-parser
<1.0,>=0.15
- mcp
<2.0.0,>=1.11.0
- opentelemetry-api
<2.0.0,>=1.30.0
- opentelemetry-instrumentation-threading
<1.00b0,>=0.51b0
- opentelemetry-sdk
<2.0.0,>=1.30.0
- pydantic
<3.0.0,>=2.4.0
- typing-extensions
<5.0.0,>=4.13.2
- watchdog
<7.0.0,>=6.0.0
- a2a-sdk
<0.4.0,>=0.3.0; extra == "a2a"
- a2a-sdk
[sql]<0.4.0,>=0.3.0; extra == "a2a"
- fastapi
<1.0.0,>=0.115.12; extra == "a2a"
- httpx
<1.0.0,>=0.28.1; extra == "a2a"
- starlette
<1.0.0,>=0.46.2; extra == "a2a"
- uvicorn
<1.0.0,>=0.34.2; extra == "a2a"
- a2a-sdk
<0.4.0,>=0.3.0; extra == "all"
- a2a-sdk
[sql]<0.4.0,>=0.3.0; extra == "all"
- anthropic
<1.0.0,>=0.21.0; extra == "all"
- boto3-stubs
[sagemaker-runtime]<2.0.0,>=1.26.0; extra == "all"
- fastapi
<1.0.0,>=0.115.12; extra == "all"
- httpx
<1.0.0,>=0.28.1; extra == "all"
- litellm
<2.0.0,>=1.75.9; extra == "all"
- llama-api-client
<1.0.0,>=0.1.0; extra == "all"
- mistralai
>=1.8.2; extra == "all"
- ollama
<1.0.0,>=0.4.8; extra == "all"
- openai
<1.108.0,>=1.68.0; extra == "all"
- openai
<2.0.0,>=1.68.0; extra == "all"
- opentelemetry-exporter-otlp-proto-http
<2.0.0,>=1.30.0; extra == "all"
- sphinx-autodoc-typehints
<2.0.0,>=1.12.0; extra == "all"
- sphinx-rtd-theme
<2.0.0,>=1.0.0; extra == "all"
- sphinx
<6.0.0,>=5.0.0; extra == "all"
- starlette
<1.0.0,>=0.46.2; extra == "all"
- uvicorn
<1.0.0,>=0.34.2; extra == "all"
- writer-sdk
<3.0.0,>=2.2.0; extra == "all"
- anthropic
<1.0.0,>=0.21.0; extra == "anthropic"
- commitizen
<5.0.0,>=4.4.0; extra == "dev"
- hatch
<2.0.0,>=1.0.0; extra == "dev"
- moto
<6.0.0,>=5.1.0; extra == "dev"
- mypy
<2.0.0,>=1.15.0; extra == "dev"
- pre-commit
<4.4.0,>=3.2.0; extra == "dev"
- pytest-asyncio
<1.2.0,>=1.0.0; extra == "dev"
- pytest-cov
<8.0.0,>=7.0.0; extra == "dev"
- pytest-xdist
<4.0.0,>=3.0.0; extra == "dev"
- pytest
<9.0.0,>=8.0.0; extra == "dev"
- ruff
<0.14.0,>=0.13.0; extra == "dev"
- sphinx-autodoc-typehints
<2.0.0,>=1.12.0; extra == "docs"
- sphinx-rtd-theme
<2.0.0,>=1.0.0; extra == "docs"
- sphinx
<6.0.0,>=5.0.0; extra == "docs"
- litellm
<2.0.0,>=1.75.9; extra == "litellm"
- openai
<1.108.0,>=1.68.0; extra == "litellm"
- llama-api-client
<1.0.0,>=0.1.0; extra == "llamaapi"
- mistralai
>=1.8.2; extra == "mistral"
- ollama
<1.0.0,>=0.4.8; extra == "ollama"
- openai
<2.0.0,>=1.68.0; extra == "openai"
- opentelemetry-exporter-otlp-proto-http
<2.0.0,>=1.30.0; extra == "otel"
- boto3-stubs
[sagemaker-runtime]<2.0.0,>=1.26.0; extra == "sagemaker"
- openai
<2.0.0,>=1.68.0; extra == "sagemaker"
- writer-sdk
<3.0.0,>=2.2.0; extra == "writer"
Strands Agents
A model-driven approach to building AI agents in just a few lines of code.
Documentation ◆ Samples ◆ Python SDK ◆ Tools ◆ Agent Builder ◆ MCP Server
Strands Agents is a simple yet powerful SDK that takes a model-driven approach to building and running AI agents. From simple conversational assistants to complex autonomous workflows, from local development to production deployment, Strands Agents scales with your needs.
Feature Overview
- Lightweight & Flexible: Simple agent loop that just works and is fully customizable
- Model Agnostic: Support for Amazon Bedrock, Anthropic, LiteLLM, Llama, Ollama, OpenAI, Writer, and custom providers
- Advanced Capabilities: Multi-agent systems, autonomous agents, and streaming support
- Built-in MCP: Native support for Model Context Protocol (MCP) servers, enabling access to thousands of pre-built tools
Quick Start
# Install Strands Agents
pip install strands-agents strands-agents-tools
from strands import Agent
from strands_tools import calculator
agent = Agent(tools=[calculator])
agent("What is the square root of 1764")
Note: For the default Amazon Bedrock model provider, you'll need AWS credentials configured and model access enabled for Claude 4 Sonnet in the us-west-2 region. See the Quickstart Guide for details on configuring other model providers.
Installation
Ensure you have Python 3.10+ installed, then:
# Create and activate virtual environment
python -m venv .venv
source .venv/bin/activate # On Windows use: .venv\Scripts\activate
# Install Strands and tools
pip install strands-agents strands-agents-tools
Features at a Glance
Python-Based Tools
Easily build tools using Python decorators:
from strands import Agent, tool
@tool
def word_count(text: str) -> int:
"""Count words in text.
This docstring is used by the LLM to understand the tool's purpose.
"""
return len(text.split())
agent = Agent(tools=[word_count])
response = agent("How many words are in this sentence?")
Hot Reloading from Directory:
Enable automatic tool loading and reloading from the ./tools/
directory:
from strands import Agent
# Agent will watch ./tools/ directory for changes
agent = Agent(load_tools_from_directory=True)
response = agent("Use any tools you find in the tools directory")
MCP Support
Seamlessly integrate Model Context Protocol (MCP) servers:
from strands import Agent
from strands.tools.mcp import MCPClient
from mcp import stdio_client, StdioServerParameters
aws_docs_client = MCPClient(
lambda: stdio_client(StdioServerParameters(command="uvx", args=["awslabs.aws-documentation-mcp-server@latest"]))
)
with aws_docs_client:
agent = Agent(tools=aws_docs_client.list_tools_sync())
response = agent("Tell me about Amazon Bedrock and how to use it with Python")
Multiple Model Providers
Support for various model providers:
from strands import Agent
from strands.models import BedrockModel
from strands.models.ollama import OllamaModel
from strands.models.llamaapi import LlamaAPIModel
# Bedrock
bedrock_model = BedrockModel(
model_id="us.amazon.nova-pro-v1:0",
temperature=0.3,
streaming=True, # Enable/disable streaming
)
agent = Agent(model=bedrock_model)
agent("Tell me about Agentic AI")
# Ollama
ollama_model = OllamaModel(
host="http://localhost:11434",
model_id="llama3"
)
agent = Agent(model=ollama_model)
agent("Tell me about Agentic AI")
# Llama API
llama_model = LlamaAPIModel(
model_id="Llama-4-Maverick-17B-128E-Instruct-FP8",
)
agent = Agent(model=llama_model)
response = agent("Tell me about Agentic AI")
Built-in providers:
Custom providers can be implemented using Custom Providers
Example tools
Strands offers an optional strands-agents-tools package with pre-built tools for quick experimentation:
from strands import Agent
from strands_tools import calculator
agent = Agent(tools=[calculator])
agent("What is the square root of 1764")
It's also available on GitHub via strands-agents/tools.
Documentation
For detailed guidance & examples, explore our documentation:
Contributing ❤️
We welcome contributions! See our Contributing Guide for details on:
- Reporting bugs & features
- Development setup
- Contributing via Pull Requests
- Code of Conduct
- Reporting of security issues
License
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
Security
See CONTRIBUTING for more information.