advanced-alchemy0.23.1
Published
Ready-to-go SQLAlchemy concoctions.
pip install advanced-alchemy
Package Downloads
Requires Python
>=3.8
Advanced Alchemy
Check out the project documentation 📚 for more information.
About
A carefully crafted, thoroughly tested, optimized companion library for SQLAlchemy, offering:
- Sync and async repositories, featuring common CRUD and highly optimized bulk operations
- Integration with major web frameworks including Litestar, Starlette, FastAPI, Sanic
- Custom-built alembic configuration and CLI with optional framework integration
- Utility base classes with audit columns, primary keys and utility functions
- Optimized JSON types including a custom JSON type for Oracle
- Integrated support for UUID6 and UUID7 using
uuid-utils
(install with theuuid
extra) - Integrated support for Nano ID using
fastnanoid
(install with thenanoid
extra) - Pre-configured base classes with audit columns UUID or Big Integer primary keys and a sentinel column.
- Synchronous and asynchronous repositories featuring:
- Common CRUD operations for SQLAlchemy models
- Bulk inserts, updates, upserts, and deletes with dialect-specific enhancements
- lambda_stmt when possible for improved query building performance
- Integrated counts, pagination, sorting, filtering with
LIKE
,IN
, and dates before and/or after.
- Tested support for multiple database backends including:
- SQLite via aiosqlite or sqlite
- Postgres via asyncpg or psycopg3 (async or sync)
- MySQL via asyncmy
- Oracle via oracledb (async or sync) (tested on 18c and 23c)
- Google Spanner via spanner-sqlalchemy
- DuckDB via duckdb_engine
- Microsoft SQL Server via pyodbc or aioodbc
- CockroachDB via sqlalchemy-cockroachdb (async or sync)
- ...and much more
Usage
Installation
pip install advanced-alchemy
[!IMPORTANT]
Check out the installation guide in our official documentation!
Repositories
Advanced Alchemy includes a set of asynchronous and synchronous repository classes for easy CRUD operations on your SQLAlchemy models.
Click to expand the example
from advanced_alchemy.base import UUIDBase
from advanced_alchemy.filters import LimitOffset
from advanced_alchemy.repository import SQLAlchemySyncRepository
from sqlalchemy import create_engine
from sqlalchemy.orm import Mapped, sessionmaker
class User(UUIDBase):
# you can optionally override the generated table name by manually setting it.
__tablename__ = "user_account" # type: ignore[assignment]
email: Mapped[str]
name: Mapped[str]
class UserRepository(SQLAlchemySyncRepository[User]):
"""User repository."""
model_type = User
# use any compatible sqlalchemy engine.
engine = create_engine("duckdb:///:memory:")
session_factory = sessionmaker(engine, expire_on_commit=False)
# Initializes the database.
with engine.begin() as conn:
User.metadata.create_all(conn)
with session_factory() as db_session:
repo = UserRepository(session=db_session)
# 1) Create multiple users with `add_many`
bulk_users = [
{"email": '[email protected]', 'name': 'Cody'},
{"email": '[email protected]', 'name': 'Janek'},
{"email": '[email protected]', 'name': 'Peter'},
{"email": '[email protected]', 'name': 'Jacob'}
]
objs = repo.add_many([User(**raw_user) for raw_user in bulk_users])
db_session.commit()
print(f"Created {len(objs)} new objects.")
# 2) Select paginated data and total row count. Pass additional filters as kwargs
created_objs, total_objs = repo.list_and_count(LimitOffset(limit=10, offset=0), name="Cody")
print(f"Selected {len(created_objs)} records out of a total of {total_objs}.")
# 3) Let's remove the batch of records selected.
deleted_objs = repo.delete_many([new_obj.id for new_obj in created_objs])
print(f"Removed {len(deleted_objs)} records out of a total of {total_objs}.")
# 4) Let's count the remaining rows
remaining_count = repo.count()
print(f"Found {remaining_count} remaining records after delete.")
For a full standalone example, see the sample here
Services
Advanced Alchemy includes an additional service class to make working with a repository easier. This class is designed to accept data as a dictionary or SQLAlchemy model, and it will handle the type conversions for you.
Here's the same example from above but using a service to create the data:
from advanced_alchemy.base import UUIDBase
from advanced_alchemy.filters import LimitOffset
from advanced_alchemy import SQLAlchemySyncRepository, SQLAlchemySyncRepositoryService
from sqlalchemy import create_engine
from sqlalchemy.orm import Mapped, sessionmaker
class User(UUIDBase):
# you can optionally override the generated table name by manually setting it.
__tablename__ = "user_account" # type: ignore[assignment]
email: Mapped[str]
name: Mapped[str]
class UserRepository(SQLAlchemySyncRepository[User]):
"""User repository."""
model_type = User
class UserService(SQLAlchemySyncRepositoryService[User]):
"""User repository."""
repository_type = UserRepository
# use any compatible sqlalchemy engine.
engine = create_engine("duckdb:///:memory:")
session_factory = sessionmaker(engine, expire_on_commit=False)
# Initializes the database.
with engine.begin() as conn:
User.metadata.create_all(conn)
with session_factory() as db_session:
service = UserService(session=db_session)
# 1) Create multiple users with `add_many`
objs = service.create_many([
{"email": '[email protected]', 'name': 'Cody'},
{"email": '[email protected]', 'name': 'Janek'},
{"email": '[email protected]', 'name': 'Peter'},
{"email": '[email protected]', 'name': 'Jacob'}
])
print(objs)
print(f"Created {len(objs)} new objects.")
# 2) Select paginated data and total row count. Pass additional filters as kwargs
created_objs, total_objs = service.list_and_count(LimitOffset(limit=10, offset=0), name="Cody")
print(f"Selected {len(created_objs)} records out of a total of {total_objs}.")
# 3) Let's remove the batch of records selected.
deleted_objs = service.delete_many([new_obj.id for new_obj in created_objs])
print(f"Removed {len(deleted_objs)} records out of a total of {total_objs}.")
# 4) Let's count the remaining rows
remaining_count = service.count()
print(f"Found {remaining_count} remaining records after delete.")
Web Frameworks
Advanced Alchemy works with nearly all Python web frameworks. Several helpers for popular libraries are included, and additional PRs to support others are welcomed.
Litestar
Advanced Alchemy is the official SQLAlchemy integration for Litestar.
In addition to installing with pip install advanced-alchemy
,
it can also be installed as a Litestar extra with pip install litestar[sqlalchemy]
.
Litestar Example
from litestar import Litestar
from litestar.plugins.sqlalchemy import SQLAlchemyPlugin, SQLAlchemyAsyncConfig
# alternately...
# from advanced_alchemy.extensions.litestar.plugins import SQLAlchemyPlugin
# from advanced_alchemy.extensions.litestar.plugins.init.config import SQLAlchemyAsyncConfig
alchemy = SQLAlchemyPlugin(
config=SQLAlchemyAsyncConfig(connection_string="sqlite+aiosqlite:///test.sqlite"),
)
app = Litestar(plugins=[alchemy])
For a full Litestar example, check here
FastAPI
FastAPI Example
from fastapi import FastAPI
from advanced_alchemy.config import SQLAlchemyAsyncConfig
from advanced_alchemy.extensions.starlette import StarletteAdvancedAlchemy
app = FastAPI()
alchemy = StarletteAdvancedAlchemy(
config=SQLAlchemyAsyncConfig(connection_string="sqlite+aiosqlite:///test.sqlite"), app=app,
)
For a full FastAPI example, see here
Starlette
Pre-built Example Apps
from starlette.applications import Starlette
from advanced_alchemy.config import SQLAlchemyAsyncConfig
from advanced_alchemy.extensions.starlette import StarletteAdvancedAlchemy
app = Starlette()
alchemy = StarletteAdvancedAlchemy(
config=SQLAlchemyAsyncConfig(connection_string="sqlite+aiosqlite:///test.sqlite"), app=app,
)
Sanic
Pre-built Example Apps
from sanic import Sanic
from sanic_ext import Extend
from advanced_alchemy.config import SQLAlchemyAsyncConfig
from advanced_alchemy.extensions.sanic import SanicAdvancedAlchemy
app = Sanic("AlchemySanicApp")
alchemy = SanicAdvancedAlchemy(
sqlalchemy_config=SQLAlchemyAsyncConfig(connection_string="sqlite+aiosqlite:///test.sqlite"),
)
Extend.register(alchemy)
Contributing
All Litestar Organization projects will always be a community-centered, available for contributions of any size.
Before contributing, please review the contribution guide.
If you have any questions, reach out to us on Discord, our org-wide GitHub discussions page, or the project-specific GitHub discussions page.
An official Litestar Organization Project