Oven logo

Oven

Published

AI Observability and Evaluation

pip install arize-phoenix

Package Downloads

Weekly DownloadsMonthly Downloads

Authors

Arize AI

Requires Python

<3.14,>=3.9

Dependencies

phoenix banner

Add Arize Phoenix MCP server to Cursor

Phoenix is an open-source AI observability platform designed for experimentation, evaluation, and troubleshooting. It provides:

  • Tracing - Trace your LLM application's runtime using OpenTelemetry-based instrumentation.
  • Evaluation - Leverage LLMs to benchmark your application's performance using response and retrieval evals.
  • Datasets - Create versioned datasets of examples for experimentation, evaluation, and fine-tuning.
  • Experiments - Track and evaluate changes to prompts, LLMs, and retrieval.
  • Playground- Optimize prompts, compare models, adjust parameters, and replay traced LLM calls.
  • Prompt Management- Manage and test prompt changes systematically using version control, tagging, and experimentation.

Phoenix is vendor and language agnostic with out-of-the-box support for popular frameworks (🦙LlamaIndex, 🦜⛓LangChain, Haystack, 🧩DSPy, 🤗smolagents) and LLM providers (OpenAI, Bedrock, MistralAI, VertexAI, LiteLLM, Google GenAI and more). For details on auto-instrumentation, check out the OpenInference project.

Phoenix runs practically anywhere, including your local machine, a Jupyter notebook, a containerized deployment, or in the cloud.

Installation

Install Phoenix via pip or conda

pip install arize-phoenix

Phoenix container images are available via Docker Hub and can be deployed using Docker or Kubernetes. Arize AI also provides cloud instances at app.phoenix.arize.com.

Packages

The arize-phoenix package includes the entire Phoenix platfom. However if you have deployed the Phoenix platform, there are light-weight Python sub-packages and TypeScript packages that can be used in conjunction with the platfrom.

Subpackages

PackageVersion & DocsDescription
arize-phoenix-otelPyPI Version DocsProvides a lightweight wrapper around OpenTelemetry primitives with Phoenix-aware defaults
arize-phoenix-clientPyPI Version DocsLightweight client for interacting with the Phoenix server via its OpenAPI REST interface
arize-phoenix-evalsPyPI Version DocsTooling to evaluate LLM applications including RAG relevance, answer relevance, and more
@arizeai/phoenix-clientNPM Version DocsClient for the Arize Phoenix API
@arizeai/phoenix-evalsNPM Version DocsTypeScript evaluation library for LLM applications (alpha release)
@arizeai/phoenix-mcpNPM Version DocsMCP server implementation for Arize Phoenix providing unified interface to Phoenix's capabilities

Tracing Integrations

Phoenix is built on top of OpenTelemetry and is vendor, language, and framework agnostic. For details about tracing integrations and example applications, see the OpenInference project.

Python Integrations

IntegrationPackageVersion Badge
OpenAIopeninference-instrumentation-openaiPyPI Version
OpenAI Agentsopeninference-instrumentation-openai-agentsPyPI Version
LlamaIndexopeninference-instrumentation-llama-indexPyPI Version
DSPyopeninference-instrumentation-dspyPyPI Version
AWS Bedrockopeninference-instrumentation-bedrockPyPI Version
LangChainopeninference-instrumentation-langchainPyPI Version
MistralAIopeninference-instrumentation-mistralaiPyPI Version
Google GenAIopeninference-instrumentation-google-genaiPyPI Version
Google ADKopeninference-instrumentation-google-adkPyPI Version
Guardrailsopeninference-instrumentation-guardrailsPyPI Version
VertexAIopeninference-instrumentation-vertexaiPyPI Version
CrewAIopeninference-instrumentation-crewaiPyPI Version
Haystackopeninference-instrumentation-haystackPyPI Version
LiteLLMopeninference-instrumentation-litellmPyPI Version
Groqopeninference-instrumentation-groqPyPI Version
Instructoropeninference-instrumentation-instructorPyPI Version
Anthropicopeninference-instrumentation-anthropicPyPI Version
Smolagentsopeninference-instrumentation-smolagentsPyPI Version
Agnoopeninference-instrumentation-agnoPyPI Version
MCPopeninference-instrumentation-mcpPyPI Version
Pydantic AIopeninference-instrumentation-pydantic-aiPyPI Version
Autogen AgentChatopeninference-instrumentation-autogen-agentchatPyPI Version
Portkeyopeninference-instrumentation-portkeyPyPI Version

Span Processors

Normalize and convert data across other instrumentation libraries by adding span processors that unify data.

PackageDescriptionVersion
openinference-instrumentation-openlitOpenInference Span Processor for OpenLIT traces.PyPI Version
openinference-instrumentation-openllmetryOpenInference Span Processor for OpenLLMetry (Traceloop) traces.PyPI Version

JavaScript Integrations

IntegrationPackageVersion Badge
OpenAI@arizeai/openinference-instrumentation-openaiNPM Version
LangChain.js@arizeai/openinference-instrumentation-langchainNPM Version
Vercel AI SDK@arizeai/openinference-vercelNPM Version
BeeAI@arizeai/openinference-instrumentation-beeaiNPM Version
Mastra@arizeai/openinference-mastraNPM Version

Java Integrations

IntegrationPackageVersion Badge
LangChain4jopeninference-instrumentation-langchain4jMaven Central
SpringAIopeninference-instrumentation-springAIMaven Central

Platforms

PlatformDescriptionDocs
BeeAIAI agent framework with built-in observabilityIntegration Guide
DifyOpen-source LLM app development platformIntegration Guide
Envoy AI GatewayAI Gateway built on Envoy Proxy for AI workloadsIntegration Guide
LangFlowVisual framework for building multi-agent and RAG applicationsIntegration Guide
LiteLLM ProxyProxy server for LLMsIntegration Guide

Community

Join our community to connect with thousands of AI builders.

Breaking Changes

See the migration guide for a list of breaking changes.

Copyright, Patent, and License

Copyright 2025 Arize AI, Inc. All Rights Reserved.

Portions of this code are patent protected by one or more U.S. Patents. See the IP_NOTICE.

This software is licensed under the terms of the Elastic License 2.0 (ELv2). See LICENSE.